

NOTE SUR 20

N° d'anomymat

LICENCE PROFESSIONNELLE INDUSTRIES CHIMIQUES ET PHARMACEUTIQUES Option DM

Année universitaire 2012/2013

1^{ère} session

Epreuve de Spectrophotométrie IR UE 17 Correcteur de l'épreuve : Lionel GODIN

Durée de l'épreuve : 1 h Documents non autorisés, tablette comprise Calculatrice autorisée

1 - Instructions générales

- Ne pas dégrafer le fascicule
- o Ecrire lisiblement
- Ne rien inscrire dans les marges
- o Respecter les modalités de réponses proposées
- Toute fraude ou tentative de fraude fera l'objet de poursuites disciplinaires (décret n° 92-657 du 13 juillet 1992)

2 - Instructions particulières à l'épreuve

 Vérifier que le cahier est complet : il comporte 7 feuilles numérotées de 1 à 7, celle-ci comprise. 1ère PARTIE : THÉORIE (6 points)

$1^{\rm ère}$ question (2 points) Situez le domaine spectral du moyen infrarouge (MIR) en nombre d'onde $\bar{\nu}$ (exprime cm-1), en longueur d'onde λ (exprimée en μ m), en fréquence ν (exprimée en Hz énergie (exprimée en eV). Vous indiquerez, à chaque fois, les relations fondamentales utilisées pour passer grandeur à l'autre. On rappelle que 1 eV = 1,60.10-19 J.	rimé en) et en			
Réponse du candidat :				
2 ^{ème} question (1,5;				
Lors de l'absorption d'un rayonnement infrarouge par une molécule, celle-ci peu	ooints) It alors			
être soumise à divers types de vibration moléculaire.				
En supposant que cette molécule possède un groupement CH_2 , citer les 6 mo vibrations possibles pour ce groupement.	des de			
Réponse du candidat :				
·				

3^{ème} question (2,5 points)

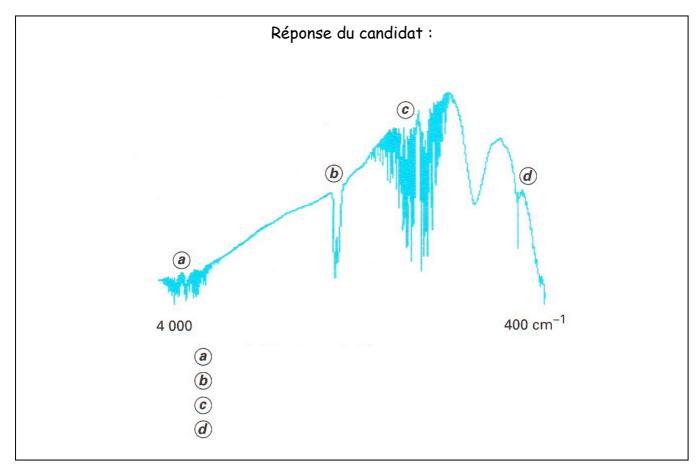
Les propriétés de la vibration d'élongation d'une molécule diatomique peuvent être décrites par un modèle mécanique classique constitué de deux masses m_A et m_B reliées par un ressort de constante de raideur k. Si l'on applique la seconde loi de Newton sur chacune des masses, on obtient le système d'équations (1) et (2) suivant :

$$\begin{cases} m_{A} \cdot \frac{d^{2}x_{A}}{dt^{2}} = k(x_{B} - x_{A}) & (1) \\ m_{B} \cdot \frac{d^{2}x_{B}}{dt^{2}} = -k(x_{B} - x_{A}) & (2) \end{cases}$$

En utilisant la variable réduite $q = x_B - x_A$, déterminer l'équation différentielle gouvernant le mouvement du système mécanique. En déduire l'expression de la fréquence de vibration v_h de ce système en fonction de k et de μ la masse réduite du système. Calculer alors la fréquence de vibration de la molécule de monoxyde de carbone.

<u>On donne</u>: Les constantes de force de liaisons $k_{C-O} = 1853 \text{ N.m}^{-1}$; La masse molaire du carbone et de l'oxygène : $M(C) = 12,0 \text{ g.mol}^{-1}$, et $M(O) = 16,0 \text{ g.mol}^{-1}$; le nombre d'Avogadro : $N_A = 6,02.10^{23} \text{ mol}^{-1}$.

Réponse du candidat :


2ème PARTIE : INSTRUMENTATION (6,5 points)

4 ^{ème} question (1 point) Il existe plusieurs méthodes pour enregistrer le spectre IR d'une substance. Les spectromètres ont en commun 4 éléments. Citer ces 4 éléments :			
Réponse du candidat :			
5 ^{ème} question (1,5 points) Citer les deux types de spectrophotomètre IR principalement utilisés à l'heure actuelle.			
Réponse du candidat :			
6ème question (2,5 points) L'appareil le plus couramment utilisé dans le moyen infrarouge est le spectrophotomètre IRTF. Que veut dire l'acronyme IRTF? Préciser les principaux éléments constituant un tel appareil.			
Réponse du candidat :			

7 ème question Les appareils IRTF ne peuvent fonctionner sans laser He-Ne. Quel est l'intérêt de ce laser ?	(1,5 points)			
Réponse du candidat :				
3ème PARTIE : ÉCHANTILLONNAGE ET ANALYSE SPECTRALE (7,5 points)				
8 ^{ème} question	(1,5 points)			
Définir la notion de résolution spectrale.				
Réponse du candidat :				

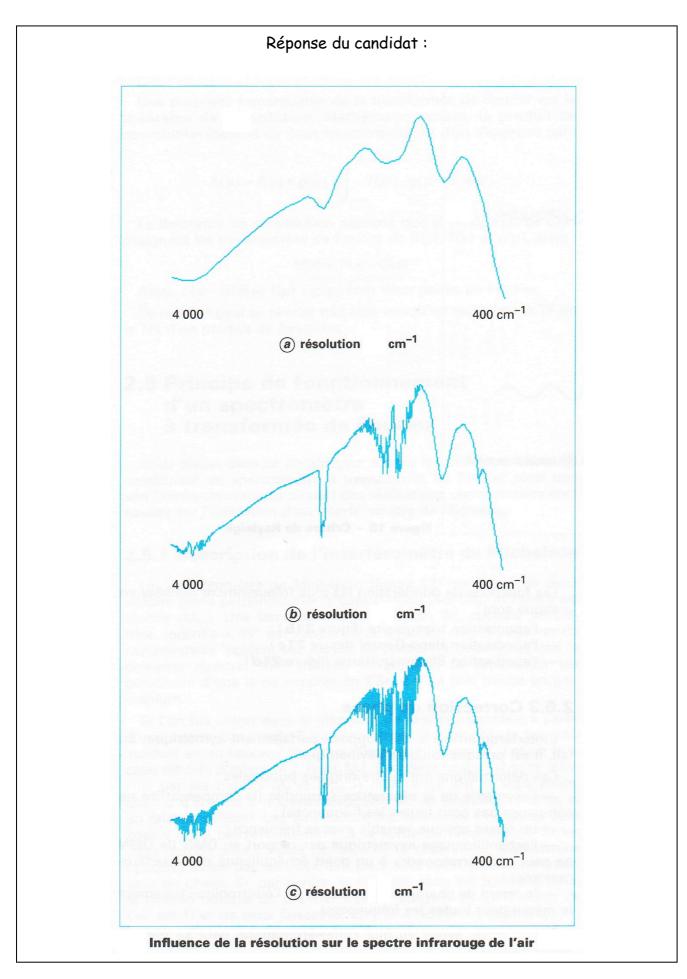
9^{ème} question (3 points)

Indiquer à quel composé correspond le spectre IR ci-dessous :

Préciser à quoi correspondent les modes de vibrations a, b, c et d.

10^{ème} question (3 points)

Un groupe d'étudiant a réalisé en pratique différents spectres de l'atmosphère à 3 résolutions différentes : $\Delta \bar{\nu}$ = 2 cm⁻¹, 8 cm⁻¹ et 128 cm⁻¹. (spectres en page 7/7)


Or au moment de réaliser leur rapport, les spectres ont été mélangés.

Attribuer la résolution spectrale au spectre correspondant.

Quel est le spectre haute résolution et que permet-il d'observer que ne permettent pas d'observer les deux autres ?

Préciser, quel est en routine, la résolution classiquement utilisée.

Réponse du candidat :

