Correction Partiel 1MC – Décembre 2018

Exercice 1.

- 1 Parmi les critères, il peut y avoir :
 - l'intervalle des indications
 - la résolution,
 - la sensibilité
 - la linéarité
 - la justesse
 - la fidélité.
- 2 L'objectif du contrôle interne de qualité, à moyen terme, permet :
- de mettre en évidence les tendances ou les phénomènes de dérive
- de mettre en place des actions préventives ou correctives afin d'éviter des situations « hors contrôle ».

3 –

$$AH + H_2O \implies A^- + H_3O^+ \qquad K_A = \frac{[A^-][H_3O^+]}{[AH]}$$

$$A^{-} + H_{2}O \implies AH + OH^{-}$$
 $K_{B} = \frac{[AH][OH^{-}]}{[A^{-}]}$

$$K_A.K_B = \frac{[A^-][H_3O^+]}{[AH]} \cdot \frac{[AH][OH^-]}{[A^-]} = [H_3O^+]. [OH^-] = K_e$$

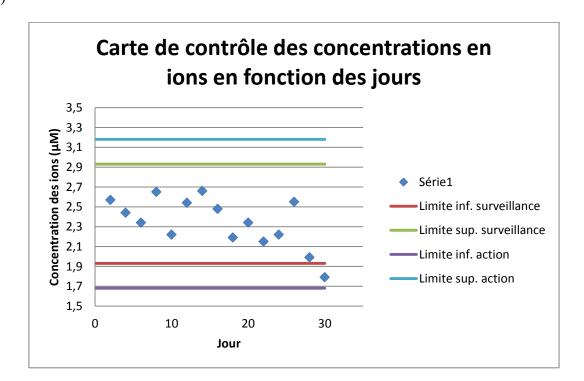
$$K_B = K_e/K_A$$

Exercice 2

La courbe n°1 représente l'espèce le plus protoné car le pH est très acide, d'où H₄Y.

Au fur et à mesure que le pH augmente, il y a perte de proton H⁺.

Donc, la courbe n°2 correspond à H_3Y^- , la courbe n°3 est H_2Y^{2-} , la courbe n°4 est HY^{3-} et la courbe n°5 est Y^{4-} .

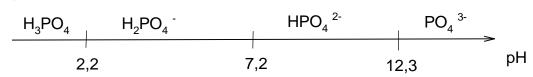

Le pKA se détermine à l'intersection des courbes, intersection pour lesquelles les espèces sont en proportions égales.

D'après le diagramme de répartition des espèces, on a pKA $(H_4Y/H_3Y^-) = 2$; pKA $(H_3Y^-/H_2Y^{2-}) = 2,7$; pKA $(H_2Y^{2-}/HY^{3-}) = 6,2$; pKA $(HY^{3-}/Y^{4-}) = 10,3$

Exercice 3

- 1) MSP signifie Maîtrise Statistique du Processus
- 2) Cette précision indique qu'on est dans un intervalle de confiance de 99,7%. k = 3 est le facteur d'élargissement.
- 3) La moyenne des concentrations est de 2,34 μM. L'écart-type s est de 0,250 μM.
- 4) La limite inférieure de surveillance est $C_{réf}$ 2s, soit 1,93 μM . La limite supérieure de surveillance est $C_{réf}$ + 2s, soit 2,93 μM La limite inférieure d'action est de $C_{réf}$ 3s, soit 1,68 μM La limite supérieure d'action est de $C_{réf}$ + 3s, soit 3,18 μM

5)



6) D'après le graphique, au jour 30, il y a une alerte d'avertissement 1_{2s}, car la valeur est éloignée de plus de 2 écart-types. Cependant, dans notre étude réalisée sur 30 jours, le processus est sous contrôle. Il faudrait éventuellement vérifier qu'après ces 30 jours, on reste toujours dans cette zone de contrôle.

Exercice 4

Partie A:

1)

2) A pH = 4,7, la solution contient majoritairement du $H_2PO_4^-$, donc $[H_2PO_4^-] = 0,05$ M. $[H_3O^+] = 10^{-pH} = 10^{-4,7} = 2,0.10^{-5}$ M

$$H_3PO_4 + H_2O \implies H_2PO_4^- + H_3O^+$$

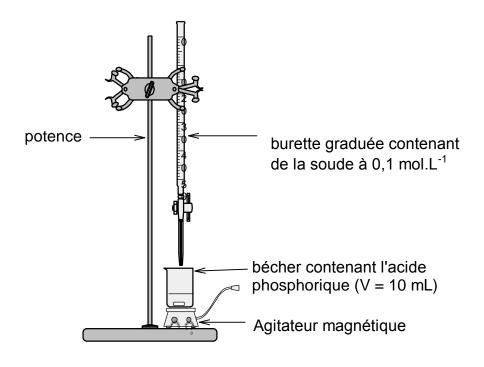
$$K_{A1} = \frac{[H_2PO_4^-][H_3O^+]}{[H_3PO_4]} \implies [H_3PO_4] = \frac{[H_2PO_4^-][H_3O^+]}{K_{A1}}$$

Application numérique : $[H_3PO_4] = 1,58.10^{-4} M$

$$H_2PO_4^- + H_3O^+ \implies HPO_4^{2-} + H_3O^+$$

$$K_{A2} = \frac{[HPO_4^{2-}][H_3O^+]}{[H_2PO_4^{-}]} \implies [HPO_4^{2-}] = \frac{K_{A2}[H_2PO_4^{-}]}{[H_3O^+]}$$

Application numérique : $[HPO_4^{2-}] = 1,58.10^{-4} M$


De même pour PO_4^{3-} avec K_{A3} . On a alors

$$[PO_4^{3-}] = \frac{K_{A3} [HPO_4^{2-}]}{[H_3O^+]}$$

Application numérique : $[PO_4^{3-}] = 3,97.10^{-12} \text{ M}.$

Partie B:

3)

- 4) $H_3PO_4 + OH^- \rightarrow H_2PO_4^- + H_2O$
- 5) A l'équivalence, les réactifs sont introduits en proportions stoechiométriques, donc :

$$[H_3PO_4].V = [OH^-].Ve$$
, soit $[H_3PO_4] = [OH^-].Ve/V$

Application numérique: $[H_3PO_4] = 0.1.50/10 = 0.5 \text{ mol.L}^{-1}$.

Exercice 5

La réaction est :

$$CH_3CO_2H + H_2O \rightleftharpoons CH_3CO_2^- + H_3O^+$$

Etat Initial	С	Excès	0	0
Etat final	C - h	Excès	h	h

Avec C: concentration initiale de l'acide éthanoïque (mol. L^{-1}) et h la concentration des produits formés en mol. L^{-1} (le volume est considéré constant).

Par définition:

$$K_A = \frac{[CH_3CO_2^-][H_3O^+]}{[CH_3CO_2^-H]}$$

$$K_A = \frac{h.h}{C - h} = \frac{h^2}{C - h}$$

Comme la solution est très diluée, on tient compte de h.

L'équation devient $h^2 + Ka.h - Ka.C = 0$, soit $h^2 + 10^{-4.8}.h - 10^{-4.8}.2,5.10^{-4} = 0$

On calcule le discriminant $\Delta = b^2 - 4$.a.c, pour résoudre cette équation du second degré.

On obtient $\Delta = 1,61.10^{-8} > 0$, donc il y a 2 solutions possibles pour h :

$$h_1 = \frac{-b + \sqrt{\Delta}}{2.a} \quad et \quad h_2 = \frac{-b - \sqrt{\Delta}}{2.a}$$

On obtient $h_1 = 5,5.10^{-5}$ M et $h_2 = -7,13.10^{-5}$ M. Comme une concentration ne peut jamais être négative, alors $h = h_1$.

Par définition, pH = - log $[H_30^+]$ = - log $(5,5.10^{-5})$ = 4,25.

Le pH de la solution est de 4,25.