DST 3 - Analyse (sur 20 points)

(1h00)

Documents non autorisés - Calculatrice autorisée Justifier les calculs Séparer calcul littéral et numérique

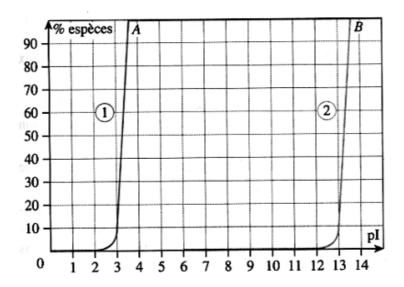
Exercice 1: Compétition entre précipités (10,5 points)

L'allure du diagramme avec ses points anguleux A et B est caractéristique du phénomène de rupture d'équilibre qu'est l'apparition ou la disparition d'un précipité.

En présence d'ions iodure, les ions Pb^{2+} donnent un précipité jaune et les ions Hg^{2+} un précipité rouge-orangé.

On définit les deux couples donneur/accepteur de la « particule échangée », l'ion iodure I :

$$PbI_{2}(s)/Pb^{2+}$$
 et $HgI_{2}(s)/Hg^{2+}$.

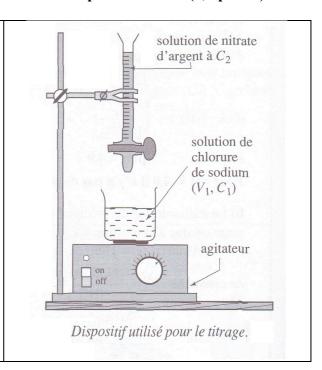

1) Écrire les équations de précipitations de chaque couple.

Lorsque l'on ajoute goutte à goutte des ions Hg^{2+} dans un tube à essais contenant un précipité d'iodure de plomb, le précipité devient rouge-orangé dès les premières gouttes.

- 2) Écrire l'équation de la réaction correspondante. Que peut-on conclure de cette observation?
- 3) Le document ci-après correspond à la simulation de l'ajout d'une solution d'ions iodure à une solution équimolaire en ions Pb^{2+} et Hg^{2+} , toutes deux aux concentrations apportées :

$$C_0 = [\ Pb^{2+}]_0 = [\ Hg^{2+}]_0 = 0,100 \ mol \cdot L^{-1}$$

Les graphes tracés représentent le pourcentage de cations métalliques présents dans la solution en fonction de $pI = -\log[I^-]$.


- a) Que représentent les points anguleux A et B? Identifier les deux courbes tracées.
- b) En déduire les produits de solubilité de PbI₂ et HgI₂.
- c) Déterminer la constante d'équilibre K de la réaction qui se produit lorsqu'on met en présence des ions Hg²⁺ avec un précipité d'iodure de plomb, puis conclure.

<u>Exercice 2</u>: Titrage par précipitation des ions chlorure par les ions argent dans des conditions de répétabilité, puis dans des conditions de reproductibilité. (9,5 points)

On s'intéresse au titrage des ions chlorure Clpar les ions argent Ag⁺.

Pour cela, on place dans un bécher un volume V_1 de solution de chlorure de sodium, de concentration inconnue C_1 .

On ajoute progressivement un volume V_2 de solution de nitrate d'argent, de concentration parfaitement connue C_2 , à l'aide d'une burette.

1) Écrire la réaction de titrage. Montrer que celle-ci est quantitative.

Donnée : $pK_s(AgCl) = 9,7$

3) Montrer qu'à l'équivalence, la concentration C_1 , a pour expression :

$$C_1 = \frac{C_2.V_{2E}}{V_1}$$

Où V_{2E} est le volume de nitrate d'argent versé à l'équivalence.

4) Un laboratoire dans lequel est effectué le dosage des ions Chlorure réalise 10 dosages dans des conditions de répétabilité.

Les résultats obtenus sont les suivants :

C_1	0,101	0,098	0,099	0,101	0,101	0,100	0,103	0,104	0,099	0,102
(mol/L)										

- a - Indiquer ce que veut dire l'énoncé, lorsqu'il est précisé que le dosage est réalisé dans des conditions de répétabilité ?

- b - On veut quantifier le défaut de répétabilité, pour cela, calculer la moyenne, l'écart-type et le Coefficient de variation en % sur la concentration.

Données:

On rappelle que le calcul de la moyenne, de l'écart-type et du CV% sur une grandeur x, obéissant à une loi normale, sont données par les relations suivantes :

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \text{et} \quad \sigma_{n-1} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \quad \text{et} \quad \text{CV\%} = \frac{\sigma_{n-1}}{\bar{x}} \times 100$$

- c On considère que la méthode de dosage est répétable si CV% < 2 %. Conclure.
- 5) Ce même laboratoire veut quantifier le défaut de reproductibilité, pour cela il décide d'effectuer une étude inter-laboratoire.
 - a Quelles sont les différences entre conditions de répétabilité et conditions de reproductibilité ?
 - b Le dosage est effectué deux fois par 6 laboratoires en conditions de répétabilité (cf annexe 1).

Calculer les statistiques C, G_{max} et G_{min} . Conclure sur les tests de Cochran et de Grubbs, en précisant les critères qui sont vérifiés par chacun de ces tests.

Données:

On rappelle que la statistique C de Cochran se calcule à partir des écart-types expérimentaux s_i obtenus par p laboratoires selon la relation suivante :

$$C = \frac{s_{\text{max}}^2}{\sum_{i=1}^p s_i^2}$$

Les valeurs G_{max} et G_{min} de Grubbs, se calculent par :

$$G_{\max} = \frac{\overline{C}_{\max} - \overline{\overline{C}}}{s(\overline{C})} \quad et \quad G_{\min} = \frac{\left|\overline{C}_{\min} - \overline{\overline{C}}\right|}{s(\overline{C})}$$

- c - On choisira comme variance de répétabilité s_r^2 la moyenne des variances obtenue par les 6 laboratoires. Calculer s_r^2 . Calculer de même, la variance inter-laboratoire s_L^2 et la variance de reproductibilité s_R^2 .

Données :

On rappelle que la variance inter-laboratoire $s_L{}^2$ et la variance de reproductibilité $s_R{}^2$ se calculent à l'aide des relations ci-dessous :

$$s_{L}^{2} = \frac{\sum_{i=1}^{p} (\overline{C}_{i} - \overline{\overline{C}})^{2}}{p-1} - \frac{s_{r}^{2}}{n}$$
 et $s_{R}^{2} = s_{L}^{2} + s_{r}^{2}$

FIN DE L'ÉPREUVE

ANNEXE 1

1ère ETAPE : Tableau des mesures réalisées par les différents laboratoires

nº Loho	C (mmol/L)		moyenne	Ecart-type s
n° Labo	Essai 1	Essai 2	(mmol/L)	(mmol/L)
1	103	103	103,00	0,00
2	104	102	103,00	1,41
3	103	103	103,00	0,00
4	101	103	102,00	1,41
5	99	100	99,50	0,71
6	98	103	100,50	3,54

2^{ÈME} ETAPE : Analyse des valeurs mesurées par les différents laboratoires

Test de Cochran

$$s_{max} = 3,54$$
 mmol/L Statistique C

Test de Grubbs

Moyenne des moyennes =	101,83	mmol/L
Moyenne la plus grande =	103	mmol/L
Moyenne la plus faible = Moyennes des Écart-type	99,5	mmol/L
=	1,51	mmol/L

$$G_{max} =$$
 $G_{min} =$

ANNEXE 2

Table de Cochran

Valeurs critiques de la statistique $\mathcal C$ de Cochran ayant la probabilité $\alpha=0,01$ ou $\alpha=0,05$ d'être dépassée.

	n mesurages par laboratoire									
p laboratoires	2		3		4		5		6	
	1 %	5 %	1 %	5 %	1 %	5 %	1 %	5 %	1 %	5 %
2	-	-	0,995	0,975	0,979	0,939	0,959	0,906	0,937	0,877
3	0,993	0,967	0,942	0,871	0,883	0,798	0,834	0,746	0,793	0,707
4	0,968	0,906	0,864	0,768	0,781	0,684	0,721	0,629	0,676	0,590
5	0,928	0,841	0,788	0,684	0,696	0,598	0,633	0,544	0,588	0,506
6	0,883	0,781	0,722	0,616	0,626	0,532	0,564	0,480	0,520	0,445
7	0,838	0,727	0,664	0,561	0,568	0,480	0,508	0,431	0,466	0,397
8	0,794	0,680	0,615	0,516	0,521	0,438	0,463	0,391	0,423	0,360
9	0,754	0,638	0,573	0,478	0,481	0,403	0,425	0,358	0,387	0,329
10	0,718	0,602	0,536	0,445	0,447	0,373	0,393	0,331	0,357	0,303
11	0,684	0,570	0,504	0,417	0,418	0,348	0,366	0,308	0,332	0,281
12	0,653	0,541	0,475	0,392	0,392	0,326	0,343	0,288	0,310	0,262
13	0,624	0,515	0,450	0,371	0,369	0,307	0,322	0,271	0,291	0,243
14	0,599	0,492	0,427	0,352	0,349	0,291	0,304	0,255	0,274	0,232
15	0,575	0,471	0,407	0,335	0,332	0,276	0,288	0,242	0,259	0,220
16	0,553	0,452	0,388	0,319	0,316	0,262	0,274	0,230	0,246	0,208
17	0,532	0,434	0,372	0,305	0,301	0,250	0,261	0,219	0,234	0,198
18	0,514	0,418	0,356	0,293	0,288	0,240	0,249	0,209	0,223	0,189
19	0,496	0,403	0,343	0,281	0,276	0,230	0,238	0,200	0,214	0,181
20	0,480	0,389	0,330	0,270	0,265	0,220	0,229	0,192	0,205	0,174

Table de Grubbs

Valeurs critiques de la statistique G_{\max} ou G_{\min} de Grubbs ayant la probabilité $\alpha=0.01$ ou $\alpha=0.05$ d'être dépassée.

р	Valeur critique					
laboratoires	à 1 %	à 5 %				
3	1,155	1,155				
4	1,496	1,481				
5	1,764	1,715				
6	1,973	1,887 2,020				
7	2,139					
8	2,274	2,126				
9	2,387	2,215				
10	2,482	2,290				
11	2,564	2,355				

р	Valeur critique				
laboratoires	à 1 %	à 5 %			
12	2,636	2,412			
13	2,699	2,462 2,507			
14	2,755				
15	2,805	2,549			
16	2,852	2,585			
17	2,894	2,620			
18	2,932	2,651			
19	2,968	2,681			
20	3,001	2,709			