DTS n° 3 ANALYSE (1 h)

Documents non autorisés - Calculatrice autorisée Justifier les calculs Séparer calcul littéral et numérique

Exercice 1 : Spectrophotométrie IR : (9,5 points)

Lorsqu'un rayonnement IR de fréquence v interagit avec une liaison polaire A-B, le ressort modélisant la liaison décrit des oscillations forcées, à la fréquence v, et absorbe pour ce faire, l'énergie du rayonnement lumineux.

Lorsque $v = v_0$ fréquence propre d'absorption de la liaison A-B, l'absorption est maximale et se traduit, sur un spectre par une faible transmittance.

- 1) Comment appelle-t-on les oscillations observées sur le spectre ?
- 2) On a relevé sur les spectres IR du benzaldéhyde et de l'alcool benzylique des bandes de forte absorbance correspondant à la vibration de valence de la liaison CO. Le tableau ci-après donne les valeurs des nombres d'onde σ_{CO} de ces bandes.

Calculer la constante de force de liaison du ressort modélisant la liaison CO dans les deux cas. Commenter.

nom	formule	σςο	
benzaldéhyde	(H)	1703 cm ⁻¹	
alcool benzylique	OH	1023 cm ⁻¹	

```
Données:
```

```
\begin{split} M(C) &= 12.0 \text{ g.mol}^{-1} \text{ ; } M(O) = 16.0 \text{ g.mol}^{-1} \text{ ; } \\ N_A &= 6.02.10^{23} \text{ mol}^{-1} \text{ ; } \\ c &= 3.00.10^8 \text{ m.s}^{-1}. \end{split}
```

3) Nommer la fonction chimique présente dans les molécules symbolisées de la manière suivante où R représente un groupe alkyle.

$$R - CH_2 - OH$$
 $R - C - H$ $R - C - OH$

4) Les spectres IR des molécules précédentes pour lesquelles R est le groupe CH₃, sont représentés en **annexe 2**.

Analyser les bandes principales de valence, et attribuer à chacune des molécules son spectre IR. (On pourra s'aider de la table reproduite en **annexe 1**, donnant les nombres d'onde des vibrations de valence des liaisons les plus courantes).

Exercice 2: CPG (10,5 points)

Nous étudions une essence sans plomb par chromatographie en phase gazeuse. Le tableau n° 1 ci-dessous donne les conditions chromatographiques employées. La figure n° 1 donne les résultats.

Tableau 1 : Conditions de l'étude de l'essence sans plomb.

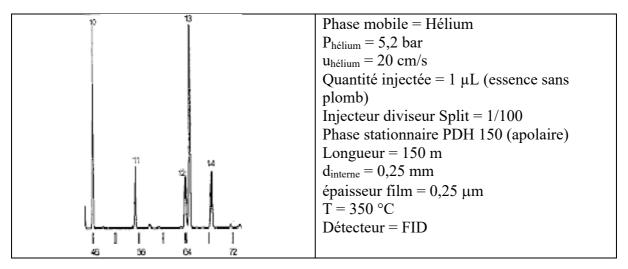


Figure 1 : Chromatogramme de l'essence sans plomb, obtenu dans ces conditions.

- 1/ Quelles propriétés sont indispensables à un échantillon pour être étudié par chromatographie en phase gazeuse ?
- 2/ Quelles sont les propriétés d'un gaz utilisé comme phase mobile ?
- 3/ Grâce aux informations mentionnées, indiquer le type de colonne utilisée, parmi les 3 grandes catégories de colonnes existantes en CPG (remplie, semi-capillaire et capillaire).
- 4/ Déterminer le temps mort.

5/ Le tableau n° 2 ci-dessous donne les temps de rétention des composés de l'essence étudiée. Les figures 2, 3 et 4 donnent les formules développées des composés séparés. Aurait-on pu prévoir l'ordre d'élution de ces composés. Justifier votre réponse.

Tableau 2 : Temps de rétention de composés de l'essence sans plomb.

Pic	10	11	12	13	14
Produit	2,4-	benzène	2-	2,3-	3-
	dimethylpentane		methylhexane	dimethylpentane	methylhexane
t _R (min)	48,00	55,17	63,90	64,59	68,28

Figure 2 : Formules du benzène et du 2,4-dimethylpentane, et leur point d'ébullition

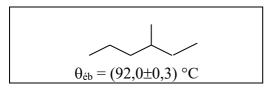


Figure 3: Formules du 3-méthylhexane, et son point d'ébullition.

Figure 4: Formules du 2-methylhexane et du 2,3-dimethylpentane, et leur point d'ébullition

6/ Calculer le facteur de rétention du benzène.

7/ Sachant que le pic du 2,3-diméthylpentane a une largeur à la base du pic de 40 secondes, évaluer le nombre de plateaux théoriques de cette colonne pour ce composé.

8/ Calculer la résolution du couple 2-methylhexane/2,3-dimethylpentane sachant que la largeur à la base du pic 2-methylhexane est de 41 secondes. Conclure.

9/ Quel est le principe de fonctionnement du détecteur utilisé ?

FIN DE L'ÉPREUVE

ANNEXE 1

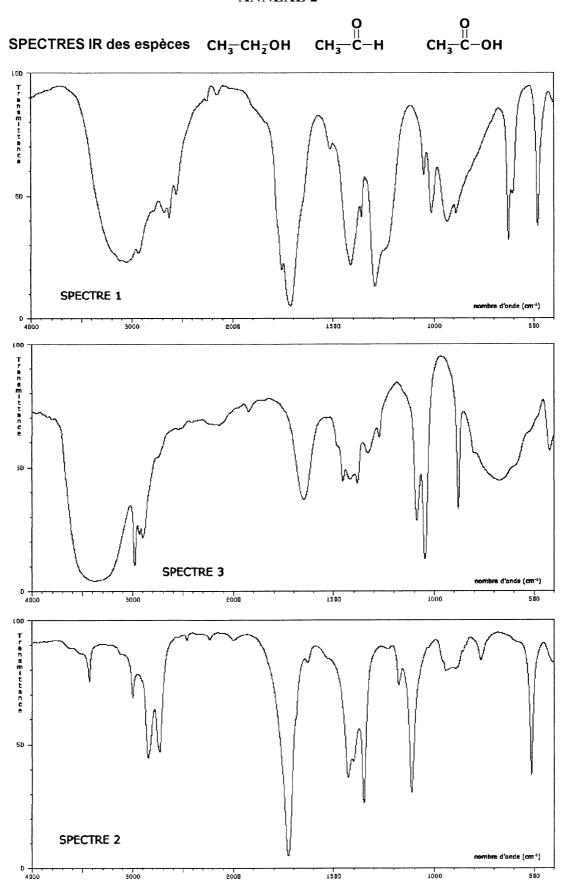

TABLE de SPECTROSCOPIE INFRAROUGE

Table des nombres d'onde des vibrations d'élongation et de déformation

 C_{tet} : C tétragonal C_{tri} : C trigonal >C= C_{di} : C digonal -C=

Liaison	Nature	Nombre d'onde (cm ⁻¹)	Intensité
	110.00.10	, inclinate a cinac (cini)	F : fort ; m : moyen ; f : faible
O-H alcool libre	Elongation	3590-3650	F (fine)
O-H alcool lié	Élongation	3200-3600	F (large)
N-H amine	Élongation	3300-3500	M
N-H amide	Élongation	3100-3500	F
C _{di} -H	Élongation	~ 3300	M ou f
C _{tri} -H	Élongation	3030-3100	M
C _{tri} -H aromatique	Élongation	3000-3100	M
C _{tet} -H	Élongation	2850-2970	F
C _{tri} -H aldéhyde	Élongation	2700-2900	M
O-H acide carboxylique	Élongation	2500-3200	F à m (large)
C=C	Élongation	2100-2260	F
C≡N nitriles	Élongation	2200-2260	F ou m
		1800-1850	
C=O anhydride	Élongation	1740-1790	F
C=O chlorure d'acide	Élongation	1790-1815	F
C=O ester	Élongation	1735-1750	F
C-O estel	Liongation	1700-1740	
C=O aldéhyde et cétone	Élongation	abaissement de ~ 20 à 30	F
C-O alderryde et cetorie	Liongation	cm ⁻¹ si conjugaison	r
C=O acide carboxylique	Élongation	1700-1725	F
C=O acide carboxylique	Élongation	1650-1700	
C=C arriide		1620-1690	M
	Élongation		***
C=C aromatique	Élongation	1450-1600	Variable ; 3 ou 4 bandes
N=O (de –NO ₂)	Élongation	1500-1550	F
Conjugué	-	1290-1360	
N=N	Élongation	1400-1500	f ; parfois invisible
C=N	Élongation	1640-1690	F ou m
N-H amine ou amide	Déformation	1560-1640	F ou m
C _{tet} -H	Déformation	1430-1470	F
C _{tet} -H (CH ₃)	Déformation	1370-1390	F ; 2 bandes
O-H	Déformation	1260-1410	F
P=O	Élongation	1250-1310	F
C _{tet} -O-C _{tet} (étheroxydes)	Elongation	1070-1150	F
C _{tet} -OH (alcools)	Élongation	1010-1200	
C _{tet} -O-C _{tri} (esters) C _{tri} -O-C _{tri} (anhydrides)	Élongation	1050-1300	F; 1 ou 2 bandes
C-N	Élongation	1020-1220	M
C-C	Élongation	1000-1250	F
C-F	Élongation	1000-1040	F
C _{tri} -H de -HC=CH- (E)	Déformation	960-970	F
(Z)	Déformation	670-730	M
C _{tri} -H aromatique	Déformation	730-770 et 680-720	F ; 2 bandes
monosubstitué			
C _{tri} -H aromatique			
o-disubstitué	Déformation	735-770	F
m-disubstitué	Déformation	750-800 et 680-720	F et m ; 2 bandes
p-disubstitué	Déformation	800-860	F
C _{tri} -H aromatique			
1,2,3 trisubstitué	Déformation	770-800 et 685-720	F et m ; 2 bandes
1,2,4 trisubstitué	Déformation	860-900 et 800-860	F et m ; 2 bandes
1,3,5 trisubstitué	Déformation	810-865 et 675-730	F et m ; 2 bandes
C _{tet} -Cl	Élongation	600-800	F
C _{tet} -Br	Élongation	500-750	F
C _{tet} -I	Élongation	≈ 500	F
	1	1 000	•

ANNEXE 2

